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Abstract

Transmission and reflectivity of LaxCa14�xCu24O41 two-leg spin-
1
2
ladders were measured in the mid-infrared regime

between 500 and 12 000 cm�1: This allows us to determine the optical conductivity s1 directly and with high sensitivity.
Here we show data for x ¼ 4 and 5 with the electrical field polarized parallel to the rungs ðEjja) and to the legs ðEjjc).
Three characteristic peaks are identified as magnetic excitations by comparison with two different theoretical

calculations. r 2002 Elsevier Science B.V. All rights reserved.
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The quantum nature of magnetic excitations in spin-12
systems and in particular the role of quantum fluctua-

tions in low dimensions are a fascinating subject.

Antiferromagnetic (AF) S ¼ 1
2
Heisenberg ladders re-

present an intermediate step between one-dimensional

(1D) chains and the 2D CuO2 layers of undoped high-Tc

superconductors. The elementary excitations of the

ladders can be described as triplets or as interacting

spinons. Topics of current interest are theoretical

predictions of 2-triplet bound states [1], the size of the

exchange coupling along the rungs ðJ>Þ and the legs ðJjjÞ
as well as the role of the ring exchange Jcyc [2]. We

address these issues in LaxCa14�xCu24O41 which con-

tains layers with Cu2O3 two-leg AF S ¼ 1
2
ladders [3].

A La content of x ¼ 6 corresponds to nominally

undoped samples, i.e. Cu2þ; but single phase crystals were
obtained only for xt5 [4]. Reflectivity and transmission

data for x ¼ 5 and 4 at 4 K are plotted in Fig. 1 along

with the deduced real part s1 of the optical conductivity.
Except for the strong phonon signature at low frequencies

the reflectivity is featureless, demonstrating that reflectiv-

ity measurements with subsequent Kramers–Kronig

transformation are not adequate to resolve small values

of s1: The transmission, however, is much more sensitive

to weak absorption and combining transmission and

reflectivity one can determine s1 most accurately.
The spectra can be divided into 3 different regimes.

Below E1300 cm�1 the rise of s1 is due to phonon

absorption. The high frequency behavior is dominated

by an electronic background that increases with hole

doping, i.e. decreasing x: To analyze the peaks in the

intermediate region we subtracted this background using

an exponential fit (dotted lines in Fig. 1). After subtrac-

tion the remaining features are almost independent of x

(see Fig. 2 for x ¼ 5). We interpret these excitations in

terms of phonon-assisted two-magnon absorption [5]

which has been used to describe s1 of the undoped 2D

cuprates (e.g. YBa2Cu3O6 [6]) and of the 1D S ¼ 1
2
chain

Sr2CuO3 [7]. Due to spin conservation two magnons are

excited. The simultaneous excitation of a phonon

provides the symmetry breaking necessary to bypass
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the selection rule and it guarantees momentum conserva-

tion [3,5,6]. Since the exchange coupling in the chains is

E2 orders of magnitude smaller than in the ladders, we

attribute the observed absorption to the ladders.

In Fig. 2 we compare the magnetic contribution to s1
of the lowest nominal doping x ¼ 5 (dashed lines; one

hole per formula unit) with 2 different theoretical

calculations. One approach is related to 1D spinon

physics and describes the spins in terms of Jordan–

Wigner fermions with a long-ranged phase factor (dash-

dot lines in Fig. 2). The other approach starts from

isolated singlets on each rung, i.e. Jjj ¼ 0; with local

triplet excitations. Using continuous unitary transfor-

mations [8], finite Jjj is then treated as a perturbation

that creates delocalized, dressed triplets (solid lines in

Fig. 2). Concerning the dispersion of the elementary

excitation (triplet or ‘‘magnon’’), the differences between

both theories are t10–20% [3]. Both show a dispersing

two-triplet bound state with Stot ¼ 0 that leaves the two-

triplet continuum at k\0:3p: The maximum of this

bound state at kEp=2 and its minimum at k ¼ p yield

van–Hove singularities in the density of states that cause

the 2 peaks at 2800 and 2140 cm�1; respectively. Both
theories are in excellent agreement with the experimental

data for Jjj=J>E1–1.2 with JjjE1020–1100 cm�1:
Further confirmation of our interpretation is the reduced

spectral weight of the peak at 2140 cm�1 for Ejja caused

by a selection rule arising from symmetry [3]. We have

thus verified the theoretical predictions of a two-triplet

bound state [1]. Finally, the broad peak at around

4000 cm�1 is identified with the two-triplet continuum.

A ratio of Jjj=J>E1 seems to be in conflict with

several former results of other techniques, proposing

Jjj=J>\1:5 (see discussion in Ref. [2]). Such large values
can be excluded on the basis of our results [3]. The

introduction of a ring exchange JcycE0:15 Jjj resolves

this issue in favor of Jjj=J>E1–1.1 [9].

In conclusion, the existence of a two-triplet bound state

is verified in the two-leg S ¼ 1
2
ladders of LaxCa14�xCu24

O41 ðx ¼ 5 and 4). We obtain the values of the exchange

constants JjjE1020–1100 cm�1 and Jjj=J>E1–1.2.
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Fig. 1. Reflectivity, transmission and optical conductivity of Lax

Ca14�xCu24O41: Solid lines: x ¼ 4; dashed: x ¼ 5; dotted lines in

lower panel: exponential fits to the electronic background. Transmis-

sion sample thicknesses: E60 mm ðE44 mmÞ for x ¼ 4 (5).

Fig. 2. Magnetic contribution to s1 of La5Ca9Cu24O41 (dashed

lines) compared with calculations using optimized perturbation

(solid lines, J> ¼ Jjj ¼ 1020 cm�1) and Jordan–Wigner fer-

mions (dash-dot lines, 1100 cm�1), respectively. The assumed

phonon energy is 600 cm�1: An exponential electronic back-

ground was subtracted from the measured data of Fig. 1. Note

the small values of s1p3 O cm�1:
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