
D 2 Spin-ice materials and magnetic monopoles

Thomas Lorenz

Physics Institute II

University of Cologne

Contents
1 Introduction 2

2 Magnetic frustration and the pyrochlore structure 2

3 Spin ice in a magnetic field 4

4 Water ice and residual entropy 7

5 Magnetic monopole excitations 9

6 Heat transport in spin ice 12

7 Concluding remarks 15

Lecture Notes of the 48th IFF Spring School “Topological Matter – Topological Insulators, Skyrmions
and Majoranas” (Forschungszentrum Jülich, 2017). All rights reserved.
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1 Introduction

Spin ice describes a class of magnetic systems where competing microscopic interactions and
geometric constraints prevent the formation of ordinary long-range magnetic order. It was dis-
covered about 20 years ago by the observation [1] that the low-temperature magnetic state
of Ho2Ti2O7 realizes a magnetic analogue of ordinary water ice. Both ices have in common
that their classical groundstate hosts a finite residual entropy, which results from the so-called
Bernal-Fowler ice rules [2] and has been explained by Pauling [3] back in the 1930s. From
neutron scattering experiments [4, 5] it is inferred that the zero-field, low-temperature magnetic
state is highly correlated, but there is no long-range magnetic order, which would be identified
by well-defined magnetic Bragg peaks. In this respect, spin ice strongly resembles so-called
spin liquids [6]. Spin liquids very often also arise from magnetic frustration, but in most cases
there is, in addition, a reduced dimensionality, which prevents the formation of long-range
magnetic order. Spin-liquid materials cover an extremely wide field ranging from, e.g., the
one-dimensional antiferromagnetic spin-1/2 Heisenberg chain, whose groundstate was solved
by Bethe already in 1931 [7], to the high-Tc cuprate superconductors, which arise from charge-
carrier doped two-dimensional spin liquids. In contrast to spin-liquid materials, the number
of spin-ice materials is rather limited and they usually arise from the three-dimensional py-
rochlore structure. Spin ice can be realized in some other structures, too, and there is also
two-dimensional, so-called artificial spin ice [8, 9], but I will concentrate on the two proto-
type spin-ice materials Ho2Ti2O7 and Dy2Ti2O7. Another similarity of spin ice and spin liquids
concerns their elementary excitations, which in both cases may consist of so-called pairs of
fractionalized particles. For spin ice, it has been predicted that, instead of ordinary magnetic
dipolar excitations, the magnetic excitation spectrum rather resembles that of pairs of more or
less unbound magnetic monopoles [10, 11]. These predictions triggered a lot of experimental
investigations that tried to identify clear signatures of magnetic monopole charges. The follow-
ing sections will give an overview of the basic concepts and models to describe spin-ice physics,
some fundamental experimental data supporting these models will be presented, and I will also
touch various open questions, which require further studies.

2 Magnetic frustration and the pyrochlore structure

Because one basic ingredient of spin-ice physics is a geometric frustration of the magnetic in-
teractions, we will first consider some simple examples of magnetic frustation. In Fig. 1(a), we
assume a triangular arrangement of Ising spins with collinear easy axes and antiferromagnetic
interactions. Whenever 2 spins are oriented antiparallel to each other, the 3rd one is frustrated,
because both possible orientations can satisfy only 1 of the 2 remaining bonds. Note that the
restriction to Ising spins is important here, because for Heisenberg spins an 120◦ orientation of
all 3 spins will minimize the total energy. It is also obvious, that there is no magnetic frustration
if the interaction is ferromagnetic and all 3 spins can point parallel to each other. This situation
changes, however, if we are dealing with Ising spins with non-collinear easy axes connecting the
center of the triangle with the respective corners, as is sketched in Fig. 1(b). In this case, each
spin pointing inwards would favor the other 2 pointing outwards, and vice versa, but, as in (a),
only 2 bonds can be satisfied while the 3rd bond remains unsatisfied. In Fig. 1(c), the triangle is
extended to a tetrahedron such that we are now dealing with a 3-dimensional arrangement of 4
Ising spins with non-collinear easy axes from each corner to the center of the tetrahedron. Be-
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Fig. 1: Ising spins with geometric frustration.

cause each spin may either point into or out of the tetrahedron, there are 24 = 16 possible spin
configurations: ”4in”, ”4out”, 4 × ”3in-1out”, 4 × ”1in-3out”, and 6 × ”2in-2out”. The ener-
getic order of these configurations can be easily obtained by balancing satisfied with unsatisfied
bonds and, for convenience, one may use the mapping of the 3-dimensional tetrahedron to a
2-dimensional square with 6 equivalent bonds, see Fig. 1(d). Because ferromagnetic intercation
favors in-out spin orientations, 4in and 4out result in 6 unsatisfied bonds, for 3in-1out as well
as for 1in-3out 3 satisfied cancel with 3 unsatisfied bonds, while the 2in-2out configurations
have 4 satisfied and only 2 unsatisfied bonds. Thus, the groundstate is given by the 2in-2out
configurations and remains sixfold degenerate. Of course, this consideration is oversimplified,
because a single tetrahedron is considered within a classical picture, but it will be seen that this
model already yields a good basis to understand many properties of the most studied spin-ice
materials Ho2Ti2O7 and Dy2Ti2O7. These materials and also the corresponding, and partially
very complex, theoretical models describing them are often referred to as ”classical spin-ice
materials/models” in order to emphasize that quantum effects are so small that they are usually
completely ignored [12]. This is different for so-called ”quantum spin-ice materials/models”
where the description based on pure Ising moments is no longer applicable [13, 14]. The latter
will not be discussed within this lecture.
The spin-ice materials crystallize in the so-called pyrochlore structure with a large, cubic unit
cell with lattice parameter a ≈ 10 Å containing 8 formula units. In order to understand the
magnetism, we concentrate on the magnetic rare-earth ions R3+ and their local evironments.
As displayed in Fig. 2, the R3+ ions form a network of corner-sharing tetrahedra, whose edges
point along the 6 equivalent {110} directions of the cubic structure and each triangular face is
perpendicular to one of the 4 equivalent {111} diagonals. The partially filled 4f -shell occupa-
tion is dominated by the centrosymmetric nuclear potential such that the free-ion Hund’s rules
are applicable. Thus, the 4f quantum numbers for Dy3+ (Ho3+) are S = 5/2 (2), L = 5 (6),
and J = 15/2 (8) with g-factors gJ = 4/3 (5/4). The (2J + 1)-fold degeneracy of this (atomic)
groundstate term is then lifted by the crystal electric field from the surrounding ions and it turns
out that for both, Dy3+ and Ho3+, the lowest-lying orbital is a doublet-state |GS〉 � |±Jmax

z 〉
with local {111} quantization axes. Contributions from other Jz quantum numbers to |GS〉 are
in the %-range only and the crystal electric field is so strong that it results in an energy differ-
ence ∆E/kB > 200 K to the first excited state.1 Thus, for the low-temperature magnetism it is
sufficient to consider local magnetic moments µ � gJµJ

max
z = 10µB which may point either

into or out of the tetrahedra. This exactly realizes the Ising spins with non-collinear easy axes
of the model in Fig. 1(c).
Concerning the magnetic interactions, there are 2 important aspects to consider: (i) the inner
4f orbitals have little overlap with those of the neighboring ions, such that exchange interaction

1From now on, energies will be given in K without the explicite Boltzmann factor kB in the denominator.
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Fig. 2: Left: The cubic pyrochlore structure contains a network of corner-sharing tetrahedra of
magnetic rare-earth ions R3+. This can be also viewed as sets of α and β chains running along
[110] and [110], respectively. Right: Each R3+ ion is surrounded by 8 nearest neighbor O2−

ions forming slightly distorted cubes with trigonal symmetry around the local [111] axes.

energies Jex are weak, and (ii) the large magnetic moments µ � 10µB result in a compara-
tively large dipole-dipole energy Dnn � 2.35 K for a nearest-neighbor distance rnn � 3.54 Å.
Following the notation of [15], the corresponding hamiltonian is

H = − Jex
∑

〈(i,a),(j,b)〉

�Sa
i · �Sb

j +
µ0µ

2

4π

∑
i>j
a,b

�Sa
i · �Sb

j

|�Rab
ij |3

−
3(�Sa

i · �Rab
ij )(�S

b
i · �Rab

ij )

|�Rab
ij |5

. (1)

Here, the vectors �Sa
i = σa

i ẑ
a denote Ising spins with normalized local easy axes ẑa along

the different {111} directions, σa
i = ±1 according to the two possible spin orientations and

the vectors �Rab
ij connect the lattice sites of �Sa

i and �Sb
j . Note that the long-range character of the

dipolar interaction makes Eq. (1) very complex. As an approximation, we restrict to the nearest-
neighbor dipolar interactions, which favor a ferromagnetic alignment of the magnetic moments
as displayed in Fig. 1(c). Thus, Eq. (1) simplifies to an effective nearest-neighbor hamiltonian

H = −3 Jeff
∑

〈(i,a),(j,b)〉

�Sa
i · �Sb

j − µ
∑
i

�Si · �B . (2)

Here, Jeff = Jex + Dnn and the additional second addend considers the Zeeman energy in
the presence of an external magnetic field2. The comparison between this so-called single-
tetrahedron approximation (2) and the experimental results of Dy2Ti2O7 and Ho2Ti2O7 reveal
Jeff � 1.1 K and � 1.8 K, respectively [16, 17]. Thus, for both materials the bare exchange
interaction Jex is antiferromagnetic and actually competes with the dipolar interaction Dnn. In
other words, Dnn is the driving force of the spin-ice behavior in these materials, which are
therefore also referred to as dipolar spin ices.

3 Spin ice in a magnetic field
Figure 3 displays the energy levels of Dy2Ti2O7 and Ho2Ti2O7 according to the single tetra-
hedron approximation. It is easy to see that each of the 2in-2out configurations results in a

2The factor of 3 compensates ẑaẑb = −1/3 due to the non-collinear easy axes.
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Fig. 3: Top: Energy levels of dipolar spin ices. The ”2in-2out” configurations carry a net
magnetic moment pointing along one of the ±{100} cubic axes reflecting the sixfold degener-
acy. The eightfold degenerate ”3in-1out” or ”1in-3out” states have moments along one of the
±{111} diagonals, while ”4in” and ”4out” are nonmagnetic. Bottom: Zeeman splitting of the
energy levels of Dy2Ti2O7 for magnetic fields applied along [001], [111], and [110].

magnetic moment of 10/
√
3µB � 5.77µB per ion, which points along one of the ±{100} cubic

axes reflecting the sixfold degeneracy. The eightfold degenerate 3in-1out/1in-3out states yield
5µB per ion pointing along one of the ±{111} diagonals. Finally, the 4in and 4out states are
nonmagnetic because the individual moments fully compensate each other. External magnetic
fields cause a Zeeman splitting of the energy levels with finite magnetic moments and the lift-
ing of these degeneracies depends on the magnetic-field direction. A field parallel to one of
the cubic axes immediately lifts the groundstate degeneracy completely, because it splits off the
2in-2out configuration whose magnetization is parallel to the field. The energy of the state with
the opposite magnetization increases, while the other four states with magnetizations perpen-
dicular to the field remain unchanged. In addition, the 3in-1out/1in-3out levels split into 2 sets
of fourfold degenerate states.
Fields along one of the diagonals {111} first reduce the groundstate degeneracy from six-to
threefold until a critical Hc is reached, where a level crossing to a non-degenerate groundstate
occurs. This high-field groundstate has one moment parallel to the field and three moments with
finite components along the field direction. As shown in Fig. 2, the pyrochlore structure consists
of planes of tetrahedra of alternating orientations stacked along the {111} directions. Thus, the
high-field groundstate for H along one of these diagonals is given by alternating planes of 3in-
1out and 1in-3out states stacked along the field direction. The threefold degenerate groundstate
for 0 < H < Hc is called Kagome-ice state. It consists of an alternating stacking of triangular
planes formed by the fully polarized moments at the tips of the tetrahedra and Kagome planes
which arise from the corresponding bottom triangles of tetrahedra; see Fig. 2. On each of theses
triangles, only 2 moments have a finite component along the field, while the third has a finite
component in the opposite direction in order to fulfill the 2in-2out ice rule. The Kagome-ice
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Fig. 4: Magnetization of Dy2Ti2O7 for different field directions obtained with increasing (•) and
decreasing (◦) field. The insets show the lowest-temperature data up to larger fields.

state is stable up to µ0Hc � 1 T in Dy2Ti2O7 and up to � 1.6 T in Ho2Ti2O7 and this difference
directly reflects the different zero-field splittings of the corresponding energy levels.
For magnetic fields applied along one of the {110} directions the magnetic structure of spin ice
is best described by so-called α chains and β chains. This is due to the fact that each tetrahedron
has 2 moments which align with a finite component along the field direction such that one of
them points into and the other out the tetrahedron. As can be seen from Fig. 2, these spins form
chains of ferromagnetically aligned Ising spins of alternating easy-axis orientations, which are
called α chains and are running parallel to the field. The remaining 2 spins of the tetrahedra
also form chains, which are oriented perpendicular to the field. The corresponding easy-axis di-
rection along these β chains also alternates, but it remains within the plane perpendicular to the
field and, thus, the magnetic field does not affect the spin orientation. Because of the ferromag-
netically aligned α spins, the β spins also align ferromagnetically with respect to each other, in
order to fulfill the 2in-2out ice rule, and for a single tetrahedron there remains a twofold right-
left degeneracy, see Fig. 3. Because in the pyrochlore structure the β spins are connected, they
also form ferromagnetically aligned β chains and therefore this twofold degeneracy vanishes
with increasing chain length. As a consequence, the β chains (induced by the transverse field
along the α chains) resemble ordinary ferromagnetic Ising chains in zero magnetic field.
Figure 4 displays characteristic low-temperature magnetization curves of Dy2Ti2O7 measured
for magnetic fields applied along the different high-symmetry directions. For H‖[001] the mag-
netization rapidly approaches saturation of about 5.8µB/Dy, which is very close to the expected
value of 5.77µB/Dy when all tetrahedra are in the 2in-2out configuration with the net moment
along the field direction. For H‖[111], the high-field saturation of about 5µB/Dy also agrees
very well with the expected value for an alternating stacking of planes with 3in-out and 1in-
3out tetrahedra. Moreover, below 1 K the magnetization develops a plateau at 3.3µB/Dy as
expected for the above-described Kagome-ice state. The width of this plateau increases on
decreasing temperature and the level-crossing transition at a critical field of µ0Hc � 1 T sys-
tematically sharpens. Finally, the magnetization curves for H‖[110] are of similar shape as
those for H‖[001], but saturate at a smaller value of about 4µB/Dy, which again agrees well
to the value of 4.08µB/Dy expected for fully polarized α chains and β chains, which do not
contribute. For all three field directions, pronounced hysteresis effects develop at the lowest
temperatures and there is a remnant magnetization when the field is decreased back to zero. It
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Fig. 5: Left: 2in-2out hydrogen arrangement in hexagonal water ice compared to the analo-
gous spin orientations in spin ice. Right: Magnetic specific heat Cm/T and the corresponding
magnetic entropy S of Dy2Ti2O7 [18] (closed symbols) together with Monte Carlo simulations
(open symbols) of the dipolar spin-ice model. (extracted from [4]).

is also found (but not shown here) that the remnant magnetization slowly decreases as a func-
tion of time and the hysteresis width depends on the field sweep rate. All these observations
reveal that the spin ice only very slowly reaches thermal equilibrium at low temperature. Apart
from this slow thermal equilibration, the principle behavior of the magnetization can be well
understood within the single-tetrahedron approximation.

4 Water ice and residual entropy

The solid phases of water ice form a very complex field of research and, depending on the
external parameters, about 20 different phases of crystalline or amorphous forms of solid ice
are reported; for a review see [19]. In the context of spin ice, we can restrict to the most
common form of solid water ice, so-called hexagonal ice Ih, which forms when water freezes
under ambient conditions. The term ”spin ice” is used to express the close analogy between the
alignments of the Ising moments and the hydrogen (or almost the H+ proton) arrangement in
hexagonal water ice. There, each O atom is tetrahedrally coordinated by 4 neighboring O atoms
and each of the 4 bonds is occupied by 1 H atom. This is the first of the so-called Bernal-Fowler
ice rules formulated back in 1933 [2]. The second one is the 2in-2out ice rule, which states that
2 H atoms of the 4 bonds are closer to the O atom and the other 2 H atoms are further away,
and follows from the fact that water ice consists of H2O molecules. As is shown Fig. 5, the 6
different possibilities of arranging the H atoms in each tetrahedron exactly corresponds to the
possible alignments of the Ising magnetic moments in spin ice. Also in the 1930s, it was found
experimentally via heat capacity measurements [20, 21] that hexagonal water ice has a finite
residual entropy, which was explained by Pauling to result from the randomness of the proton
arrangement [3]. The so-called Pauling approximation considers that water ice of N molecules
has in total 22N possibilities to arrange the H atoms, but only the fraction (6/16)N of them
fulfills the 2in-2out rule. This then results in Pauling’s molar residual entropy3
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Fig. 4: Magnetization of Dy2Ti2O7 for different field directions obtained with increasing (•) and
decreasing (◦) field. The insets show the lowest-temperature data up to larger fields.

state is stable up to µ0Hc � 1 T in Dy2Ti2O7 and up to � 1.6 T in Ho2Ti2O7 and this difference
directly reflects the different zero-field splittings of the corresponding energy levels.
For magnetic fields applied along one of the {110} directions the magnetic structure of spin ice
is best described by so-called α chains and β chains. This is due to the fact that each tetrahedron
has 2 moments which align with a finite component along the field direction such that one of
them points into and the other out the tetrahedron. As can be seen from Fig. 2, these spins form
chains of ferromagnetically aligned Ising spins of alternating easy-axis orientations, which are
called α chains and are running parallel to the field. The remaining 2 spins of the tetrahedra
also form chains, which are oriented perpendicular to the field. The corresponding easy-axis di-
rection along these β chains also alternates, but it remains within the plane perpendicular to the
field and, thus, the magnetic field does not affect the spin orientation. Because of the ferromag-
netically aligned α spins, the β spins also align ferromagnetically with respect to each other, in
order to fulfill the 2in-2out ice rule, and for a single tetrahedron there remains a twofold right-
left degeneracy, see Fig. 3. Because in the pyrochlore structure the β spins are connected, they
also form ferromagnetically aligned β chains and therefore this twofold degeneracy vanishes
with increasing chain length. As a consequence, the β chains (induced by the transverse field
along the α chains) resemble ordinary ferromagnetic Ising chains in zero magnetic field.
Figure 4 displays characteristic low-temperature magnetization curves of Dy2Ti2O7 measured
for magnetic fields applied along the different high-symmetry directions. For H‖[001] the mag-
netization rapidly approaches saturation of about 5.8µB/Dy, which is very close to the expected
value of 5.77µB/Dy when all tetrahedra are in the 2in-2out configuration with the net moment
along the field direction. For H‖[111], the high-field saturation of about 5µB/Dy also agrees
very well with the expected value for an alternating stacking of planes with 3in-out and 1in-
3out tetrahedra. Moreover, below 1 K the magnetization develops a plateau at 3.3µB/Dy as
expected for the above-described Kagome-ice state. The width of this plateau increases on
decreasing temperature and the level-crossing transition at a critical field of µ0Hc � 1 T sys-
tematically sharpens. Finally, the magnetization curves for H‖[110] are of similar shape as
those for H‖[001], but saturate at a smaller value of about 4µB/Dy, which again agrees well
to the value of 4.08µB/Dy expected for fully polarized α chains and β chains, which do not
contribute. For all three field directions, pronounced hysteresis effects develop at the lowest
temperatures and there is a remnant magnetization when the field is decreased back to zero. It
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Fig. 5: Left: 2in-2out hydrogen arrangement in hexagonal water ice compared to the analo-
gous spin orientations in spin ice. Right: Magnetic specific heat Cm/T and the corresponding
magnetic entropy S of Dy2Ti2O7 [18] (closed symbols) together with Monte Carlo simulations
(open symbols) of the dipolar spin-ice model. (extracted from [4]).

is also found (but not shown here) that the remnant magnetization slowly decreases as a func-
tion of time and the hysteresis width depends on the field sweep rate. All these observations
reveal that the spin ice only very slowly reaches thermal equilibrium at low temperature. Apart
from this slow thermal equilibration, the principle behavior of the magnetization can be well
understood within the single-tetrahedron approximation.

4 Water ice and residual entropy

The solid phases of water ice form a very complex field of research and, depending on the
external parameters, about 20 different phases of crystalline or amorphous forms of solid ice
are reported; for a review see [19]. In the context of spin ice, we can restrict to the most
common form of solid water ice, so-called hexagonal ice Ih, which forms when water freezes
under ambient conditions. The term ”spin ice” is used to express the close analogy between the
alignments of the Ising moments and the hydrogen (or almost the H+ proton) arrangement in
hexagonal water ice. There, each O atom is tetrahedrally coordinated by 4 neighboring O atoms
and each of the 4 bonds is occupied by 1 H atom. This is the first of the so-called Bernal-Fowler
ice rules formulated back in 1933 [2]. The second one is the 2in-2out ice rule, which states that
2 H atoms of the 4 bonds are closer to the O atom and the other 2 H atoms are further away,
and follows from the fact that water ice consists of H2O molecules. As is shown Fig. 5, the 6
different possibilities of arranging the H atoms in each tetrahedron exactly corresponds to the
possible alignments of the Ising magnetic moments in spin ice. Also in the 1930s, it was found
experimentally via heat capacity measurements [20, 21] that hexagonal water ice has a finite
residual entropy, which was explained by Pauling to result from the randomness of the proton
arrangement [3]. The so-called Pauling approximation considers that water ice of N molecules
has in total 22N possibilities to arrange the H atoms, but only the fraction (6/16)N of them
fulfills the 2in-2out rule. This then results in Pauling’s molar residual entropy3
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Fig. 6: (a) Low-temperature specific heat of Dy2Ti2O7 from [22, 23, 24, 5]. The inset sketches
a sample containing different (e.g. phononic, magnetic, ...) subsystems, which may be out of
thermal equilibrium, if their thermal coupling is weak. This results in highly non-exponential
time dependences ∆T (t) = TP(t) − Tbath between the platform and bath temperatures as is
observed in [22, 23, 24] and is shown in (b) for (average) sample temperatures TS < 0.8 K [23].
(c) Magnetic entropy change obtained in [23] for Dy2Ti2O7 in magnetic fields µ0H = 0, 0.5,
and 1 T applied along [001]. Smag(25 K, H) is adjusted to the full magnetic entropy R ln(2)
(black dashed line) and Pauling’s residual entropy from Eq. (3) is shown by the red dashed line.

Concerning the spin-ice materials, the magnetic contribution to the specific heat has been ana-
lyzed and, in fact, for Dy2Ti2O7 the entropy change from about 0.2 to 15 K has been found [18]
to differ from the full entropy R ln(2) by almost exactly the value of SP. Moreover, it has been
also shown [4] that the experimental data over the entire temperature range are well reproduced
by Monte Carlo simulations of the dipolar spin-ice model; see Fig. 5. A natural question in this
context arises from the conflict of the finite residual groundstate entropy of the dipolar spin-ice
model with the 3rd law of thermodynamics (Nernst’s theorem) predicting a vanishing entropy
at zero temperature. Thus, there were a lot of efforts to clarify whether some kind of magnetic
order finally evolves at low-enough temperature, but until now no such order could be proven
experimentally. Of course, one may always argue that the experimentally obtained tempera-
tures were not yet low enough, but independent from this principle problem, there are other
issues which complicate the situation in the dipolar spin-ice materials. For Ho2Ti2O7, a large
specific-heat contribution from the nuclear moments completely dominates the measured low-
temperature specific-heat data and prevents an unambiguous separation of the low-temperature
magnetic entropy [8].
For Dy2Ti2O7, the main problem arises from the above-mentioned problem of slow thermal
equilibration, which makes measurements of the low-temperature specific heat very problem-
atic. This has been pointed out independently by different groups [22, 23, 24] during the last
years and, as shown in Fig. 6(a), the published low-temperature cp data of Dy2Ti2O7 differ by
up to almost 2 orders of magnitude. Standard techniques to measure cp typically use rather
short (usually less than a few minutes) heat pulses and result in small cp values [5, 18], whereas
significantly larger cp values are obtained when for each data point thermal equilibration times
of the order of 10–20 minutes are used [23, 24, 25]. As pointed out, however, in [22] thermal
equilibration times of up to many hours may become relevant at lowest temperature and accord-
ing to this report cp(T ) re-increases below about 0.4 K. Phenomenologically, this behavior can
be described by assuming that a sample consists of different, e.g. one (or several) phononic,
nuclear, or magnetic, subsystems with individual heat capacities Ci and thermal couplings kij

Spin-ice materials and magnetic monopoles D2.9

between them, as sketched in Fig. 6(a). As long as these couplings are large, any heat trans-
ferred to the sample is distributed over all subsystems proportional to the magnitudes of the Ci

and defines a common sample temperature TS . With respect to the experimental determination
of the specific heat, this means: if all internal kij’s (and the coupling of at least one of them
to the sample platform) are much larger than the thermal coupling K between platform and an
external heat bath, TS will be equal to the measured platform temperature TP and any temper-
ature difference ∆T (t) = TP(t) − Tbath will evolve exponentially as a function of time t with
a single relaxation time τ = C/K where C =

∑
i Ci. As is shown in Fig. 6(b), this is well

fulfilled for Dy2Ti2O7 at TS � 0.8 K, where the semilogarithmic plot of 1−∆T (t)/∆Tmax is a
straight line. However, a strong curvature develops on decreasing temperature and the resulting
cp values sensitively depend on the methods used for its extraction. Of particular importance
is the time window, over which ∆T (t) is measured, and the width of the experimentally ac-
cessible window depends on the experimental setup. An increasing time window allows for a
better thermalization of the sample, but it also requires an extreme stability of all experimen-
tal parameters over such long time, because for non-exponential ∆T (t) curves cp is obtained
by time integration of ∆T (t). Thus, an unambiguous determination of cp down to the lowest
temperature remains problematic.
What does this ambiguity mean in the context of Pauling’s residual entropy? Because the var-
ious experimental data sets agree well above about 0.5 K, we will first concentrate on this
higher temperature range. Because experimentally only entropy changes can be determined,
one has to fix the magnetic entropy at some point, e.g. to R ln(2) at high-enough temperature.
For Dy2Ti2O7, T ≈ 25 K should be sufficient, because all energy levels are below 10 K (see
Fig. 3). In addition, an estimate of the phononic background is required, which can be obtained
from measurements of nonmagnetic reference materials, e.g. Y2Ti2O7 [23], and this estimate
can be checked by considering the total entropy change in a finite magnetic field, which causes
a non-degenerate ground state. As shown in Fig. 6(c), the resulting entropy change in exter-
nal fields of 0.5 or 1 T ‖[001] agrees very well with the expected R ln(2). In contrast, the
zero-field entropy for T � 0.5 K is very close to Pauling’s residual entropy SP. The slightly
different absolute values of SP and the experimental result should not be overinterpreted. How-
ever, there is a significant slope ∂S/∂T = cmag/T in the experimental data and according to
Pomaranski et al. [22] this slope considerably increases with further decreasing temperature.
This approximate plateau-like feature of the entropy is one justification that down to T � 0.5 K
Dy2Ti2O7 approaches the degenerate ground state of the classical dipolar spin ice. However,
with further decreasing temperature some kind of ordered ground state seems to evolve ulti-
mately. One may expect this to occur due to quantum effects, additional weaker interactions,
and/or magnetoelastic coupling, but the real groundstates of this and other (quantum) spin-
ice candidates are in most cases not known, see e.g. [12, 14, 26]. Recently, various ordered
groundstates for Dy2Ti2O7 have been suggested, which can arise depending on the strength of
quantum tunneling [27]. Moreover, weak non-magnetic dilution may induce transitions to a
so-called topological spin glass [28].

5 Magnetic monopole excitations

Up to this point, mainly the unusual ground state of dipolar spin ice has been discussed, but
even more exotic are the low-lying excitations. Although these excitations result from mag-
netic dipole excitations, it turns out that the dipole excitations can fractionalize into pairs of
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Fig. 6: (a) Low-temperature specific heat of Dy2Ti2O7 from [22, 23, 24, 5]. The inset sketches
a sample containing different (e.g. phononic, magnetic, ...) subsystems, which may be out of
thermal equilibrium, if their thermal coupling is weak. This results in highly non-exponential
time dependences ∆T (t) = TP(t) − Tbath between the platform and bath temperatures as is
observed in [22, 23, 24] and is shown in (b) for (average) sample temperatures TS < 0.8 K [23].
(c) Magnetic entropy change obtained in [23] for Dy2Ti2O7 in magnetic fields µ0H = 0, 0.5,
and 1 T applied along [001]. Smag(25 K, H) is adjusted to the full magnetic entropy R ln(2)
(black dashed line) and Pauling’s residual entropy from Eq. (3) is shown by the red dashed line.

Concerning the spin-ice materials, the magnetic contribution to the specific heat has been ana-
lyzed and, in fact, for Dy2Ti2O7 the entropy change from about 0.2 to 15 K has been found [18]
to differ from the full entropy R ln(2) by almost exactly the value of SP. Moreover, it has been
also shown [4] that the experimental data over the entire temperature range are well reproduced
by Monte Carlo simulations of the dipolar spin-ice model; see Fig. 5. A natural question in this
context arises from the conflict of the finite residual groundstate entropy of the dipolar spin-ice
model with the 3rd law of thermodynamics (Nernst’s theorem) predicting a vanishing entropy
at zero temperature. Thus, there were a lot of efforts to clarify whether some kind of magnetic
order finally evolves at low-enough temperature, but until now no such order could be proven
experimentally. Of course, one may always argue that the experimentally obtained tempera-
tures were not yet low enough, but independent from this principle problem, there are other
issues which complicate the situation in the dipolar spin-ice materials. For Ho2Ti2O7, a large
specific-heat contribution from the nuclear moments completely dominates the measured low-
temperature specific-heat data and prevents an unambiguous separation of the low-temperature
magnetic entropy [8].
For Dy2Ti2O7, the main problem arises from the above-mentioned problem of slow thermal
equilibration, which makes measurements of the low-temperature specific heat very problem-
atic. This has been pointed out independently by different groups [22, 23, 24] during the last
years and, as shown in Fig. 6(a), the published low-temperature cp data of Dy2Ti2O7 differ by
up to almost 2 orders of magnitude. Standard techniques to measure cp typically use rather
short (usually less than a few minutes) heat pulses and result in small cp values [5, 18], whereas
significantly larger cp values are obtained when for each data point thermal equilibration times
of the order of 10–20 minutes are used [23, 24, 25]. As pointed out, however, in [22] thermal
equilibration times of up to many hours may become relevant at lowest temperature and accord-
ing to this report cp(T ) re-increases below about 0.4 K. Phenomenologically, this behavior can
be described by assuming that a sample consists of different, e.g. one (or several) phononic,
nuclear, or magnetic, subsystems with individual heat capacities Ci and thermal couplings kij
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between them, as sketched in Fig. 6(a). As long as these couplings are large, any heat trans-
ferred to the sample is distributed over all subsystems proportional to the magnitudes of the Ci

and defines a common sample temperature TS . With respect to the experimental determination
of the specific heat, this means: if all internal kij’s (and the coupling of at least one of them
to the sample platform) are much larger than the thermal coupling K between platform and an
external heat bath, TS will be equal to the measured platform temperature TP and any temper-
ature difference ∆T (t) = TP(t) − Tbath will evolve exponentially as a function of time t with
a single relaxation time τ = C/K where C =

∑
i Ci. As is shown in Fig. 6(b), this is well

fulfilled for Dy2Ti2O7 at TS � 0.8 K, where the semilogarithmic plot of 1−∆T (t)/∆Tmax is a
straight line. However, a strong curvature develops on decreasing temperature and the resulting
cp values sensitively depend on the methods used for its extraction. Of particular importance
is the time window, over which ∆T (t) is measured, and the width of the experimentally ac-
cessible window depends on the experimental setup. An increasing time window allows for a
better thermalization of the sample, but it also requires an extreme stability of all experimen-
tal parameters over such long time, because for non-exponential ∆T (t) curves cp is obtained
by time integration of ∆T (t). Thus, an unambiguous determination of cp down to the lowest
temperature remains problematic.
What does this ambiguity mean in the context of Pauling’s residual entropy? Because the var-
ious experimental data sets agree well above about 0.5 K, we will first concentrate on this
higher temperature range. Because experimentally only entropy changes can be determined,
one has to fix the magnetic entropy at some point, e.g. to R ln(2) at high-enough temperature.
For Dy2Ti2O7, T ≈ 25 K should be sufficient, because all energy levels are below 10 K (see
Fig. 3). In addition, an estimate of the phononic background is required, which can be obtained
from measurements of nonmagnetic reference materials, e.g. Y2Ti2O7 [23], and this estimate
can be checked by considering the total entropy change in a finite magnetic field, which causes
a non-degenerate ground state. As shown in Fig. 6(c), the resulting entropy change in exter-
nal fields of 0.5 or 1 T ‖[001] agrees very well with the expected R ln(2). In contrast, the
zero-field entropy for T � 0.5 K is very close to Pauling’s residual entropy SP. The slightly
different absolute values of SP and the experimental result should not be overinterpreted. How-
ever, there is a significant slope ∂S/∂T = cmag/T in the experimental data and according to
Pomaranski et al. [22] this slope considerably increases with further decreasing temperature.
This approximate plateau-like feature of the entropy is one justification that down to T � 0.5 K
Dy2Ti2O7 approaches the degenerate ground state of the classical dipolar spin ice. However,
with further decreasing temperature some kind of ordered ground state seems to evolve ulti-
mately. One may expect this to occur due to quantum effects, additional weaker interactions,
and/or magnetoelastic coupling, but the real groundstates of this and other (quantum) spin-
ice candidates are in most cases not known, see e.g. [12, 14, 26]. Recently, various ordered
groundstates for Dy2Ti2O7 have been suggested, which can arise depending on the strength of
quantum tunneling [27]. Moreover, weak non-magnetic dilution may induce transitions to a
so-called topological spin glass [28].

5 Magnetic monopole excitations

Up to this point, mainly the unusual ground state of dipolar spin ice has been discussed, but
even more exotic are the low-lying excitations. Although these excitations result from mag-
netic dipole excitations, it turns out that the dipole excitations can fractionalize into pairs of
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Fig. 7: Fractionalization of magnetic dipoles to monopole-antimonopole pairs. White squares
represent tetrahedra with 4 Ising moments (black arrows); each of them belongs to 2 neighbor-
ing tetrahedra. (a) In zero field, each square is in one of the sixfold 2in-2out states. Red arrows
represent the corresponding net moments, pointing along one of the six cubic {001} directions.
(b) A single spin flip excites neighboring 3in-1out/1in-3out states, which can move indepen-
dently over the lattice via single flips without additional energy cost, because the marked ar-
rows of the yellow squares in (c) switched between degenerate 2in-2out states. (d) A magnetic
field along [001] fixes a particular 2in-2out configuration as the groundstate, (e) a neighbor-
ing pair of 3in-1out/1in-3out excitations needs additional Zeeman energy, and (f) each step of
separating them induces additional Zeeman-excited 2in-2out states marked by blue squares.

magnetic monopoles and anti-monopoles (north and south poles) that, for zero magnetic field,
may propagate almost independently over the lattice. The basic idea for this fractionalization
is sketched in Fig. 7, where for simplicity the 3-dimensional pyrochlore lattice is mapped to 2
dimensions [4]. As in Fig. 1(c,d), each tetrahedron is expressed by a square and the corner-
sharing pyrochlore structure then transforms to a checkerboard, where one type of squares, e.g.
the white ones, represent the tetrahedra. In zero field, each tetrahedron chooses one of the
sixfold degenerate 2in-2out states with net magnetizations along one of the six cubic {001}
directions. In Fig. 7(a), the directions of the individual magnetic moments are indicated by the
arrows, which on a larger scale average to a vanishing total magnetization. A single spin flip
needs an excitation energy of 2.2 K (3.3 K) for Dy2Ti2O7 (Ho2Ti2O7), see Fig. 3, and creates
a pair of neighboring tetrahedra in the 3in-1out and the 1in-3out configurations as indicated
by the red and blue circles, respectively, in Fig. 7(b). Now it is straightforward to see that, by
applying successive additional spin flips, the positions of the excited tetrahedra may separate
from each other without increasing the number of excited tetrahedra. This is a consequence of
the degeneracy of the 2in-2out states and, in the example of Fig. 7(c), the marked arrows of the
yellow squares just switched between different 2in-2out states. Thus, on this level of simpli-
fication, the original dipole excitation fractionalizes into 2 independent monopole excitations
without additional energy cost.

Fractionalized excitations are a typical feature of one-dimensional models, e.g., a ferromagneti-
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cally ordered chain of Ising spins. There, the lowest excitation corresponds to a single spin flip,
which breaks the bonds to the left and right neighbors. Having excited this state once, succes-
sive additional spin flips do not further increase the number of broken bonds, but only change
the length of a magnetic domain of inverted spins. Therefore, the single spin flip fractionalizes
into 2 independent domain walls, which may propagate freely along the chain. Note that this
also applies to the β chains of spin ice, when a finite magnetic field is applied along the α
chains. Another example is the antiferromagnetic Heisenberg spin-1/2 chain, where the S = 1
triplet excitations fractionalize into pairs of S = 1/2 (anti-)spinon excitations. Usually, such
a fractionalization is suppressed by a finite 3d coupling to neighboring chains and, in general,
it does not occur in higher-dimensional systems. This is basically related to the fact that the
domain walls of strictly 1d chains are independent of the domain length, while in higher di-
mensions the domain-wall size, and thus the number of broken bonds, increases with increasing
domain volume. Therefore, the dipolar spin-ice materials represent the very exceptional case
where fractional excitations can be realized in a 3-dimensional system.
Another important aspect is the analogy of these fractional excitations to magnetic monopoles.
This can be best visualized within the so-called dumbbell model [11]. For its construction,
the dipole vectors (black arrows in Fig. 7) are replaced by dumbbells of opposite magnetic
monopole charges ±qm at the centers of the 2 neighboring tetrahedra. In order to reproduce
the original dipole moment µ � 10µB, on has to set qm � 10µB/rt � 2.3µB/Å, where
rt =

√
3/2 rnn is the distance between the centers of neighboring tetrahedra and rnn � 3.54 Å

denotes the nearest neighbor distance of the magnetic Dy or Ho ions. Each tetrahedron is oc-
cupied by 4 magnetic monopole charges, which just cancel to zero for the six 2in-2out config-
urations, the 3in-1out and 1in-3out states carry +2qm and −2qm, respectively, while 4in (4out)
has a total charge of +4qm (−4qm). By introducing the net magnetic charge Q = 2qm, one can
formulate a magnetic Coulomb law:

V (rαβ) =

{
µ0

4π

QαQβ

rαβ
α �= β

1
2
ν0Q

2
α α = β

(4)

As is shown in [11], Eq. (4) yields a very good approximation of the original dipolar spin-ice
model based on Eq. (1). The tetrahedra are labeled by α, β, the first line describes a (magnetic)
Coulomb interaction between charges on different sites and the second line is a self energy,
where the parameter ν0 is given by a lengthy combination of Jex, Dnn, and rnn; see [11]. Each
tetrahedral site may be occupied either with 0, 1, or 2 charges of ±Q, but there are as many
positive as negative charges, because they can only be created pairwise by rotating a dumbbell.
With the above constraints (and a large-enough value of ν0), the groundstate of Eq. (4) at zero
energy is given by Qα = 0 for all sites, which obviously corresponds to the 2in-2out states
given by the ice rule including their sixfold degeneracy. A minimum excitation requires twice
the self energy minus the nearest-neighbor attraction. This corresponds to Fig. 7(b), where
the red and blue circles correspond to +Q and −Q, respectively, and in (c) the distance rαβ
between the monopole charges has increased. Due to the 1/rαβ potential, it is also clear now
that the total energy increases with increasing distance, but nevertheless the ±Q excitations
behave as individual magnetic (anti-)monopoles, because they are asymptotically free in the
limit of infinite rαβ . In this sense, the situation is equivalent to electric charges ±Qe with
the electrostatic 1/r Coulomb potential. Of course, there are also clear differences and the
model (4) has limitations. A rather detailed discussion of these aspects in comparison to other
models, numerical simulations via Monte Carlo simulations and their applicability to reproduce
the experimental data of Dy2Ti2O7 can be found, e.g., in [29].
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Fig. 7: Fractionalization of magnetic dipoles to monopole-antimonopole pairs. White squares
represent tetrahedra with 4 Ising moments (black arrows); each of them belongs to 2 neighbor-
ing tetrahedra. (a) In zero field, each square is in one of the sixfold 2in-2out states. Red arrows
represent the corresponding net moments, pointing along one of the six cubic {001} directions.
(b) A single spin flip excites neighboring 3in-1out/1in-3out states, which can move indepen-
dently over the lattice via single flips without additional energy cost, because the marked ar-
rows of the yellow squares in (c) switched between degenerate 2in-2out states. (d) A magnetic
field along [001] fixes a particular 2in-2out configuration as the groundstate, (e) a neighbor-
ing pair of 3in-1out/1in-3out excitations needs additional Zeeman energy, and (f) each step of
separating them induces additional Zeeman-excited 2in-2out states marked by blue squares.

magnetic monopoles and anti-monopoles (north and south poles) that, for zero magnetic field,
may propagate almost independently over the lattice. The basic idea for this fractionalization
is sketched in Fig. 7, where for simplicity the 3-dimensional pyrochlore lattice is mapped to 2
dimensions [4]. As in Fig. 1(c,d), each tetrahedron is expressed by a square and the corner-
sharing pyrochlore structure then transforms to a checkerboard, where one type of squares, e.g.
the white ones, represent the tetrahedra. In zero field, each tetrahedron chooses one of the
sixfold degenerate 2in-2out states with net magnetizations along one of the six cubic {001}
directions. In Fig. 7(a), the directions of the individual magnetic moments are indicated by the
arrows, which on a larger scale average to a vanishing total magnetization. A single spin flip
needs an excitation energy of 2.2 K (3.3 K) for Dy2Ti2O7 (Ho2Ti2O7), see Fig. 3, and creates
a pair of neighboring tetrahedra in the 3in-1out and the 1in-3out configurations as indicated
by the red and blue circles, respectively, in Fig. 7(b). Now it is straightforward to see that, by
applying successive additional spin flips, the positions of the excited tetrahedra may separate
from each other without increasing the number of excited tetrahedra. This is a consequence of
the degeneracy of the 2in-2out states and, in the example of Fig. 7(c), the marked arrows of the
yellow squares just switched between different 2in-2out states. Thus, on this level of simpli-
fication, the original dipole excitation fractionalizes into 2 independent monopole excitations
without additional energy cost.

Fractionalized excitations are a typical feature of one-dimensional models, e.g., a ferromagneti-
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cally ordered chain of Ising spins. There, the lowest excitation corresponds to a single spin flip,
which breaks the bonds to the left and right neighbors. Having excited this state once, succes-
sive additional spin flips do not further increase the number of broken bonds, but only change
the length of a magnetic domain of inverted spins. Therefore, the single spin flip fractionalizes
into 2 independent domain walls, which may propagate freely along the chain. Note that this
also applies to the β chains of spin ice, when a finite magnetic field is applied along the α
chains. Another example is the antiferromagnetic Heisenberg spin-1/2 chain, where the S = 1
triplet excitations fractionalize into pairs of S = 1/2 (anti-)spinon excitations. Usually, such
a fractionalization is suppressed by a finite 3d coupling to neighboring chains and, in general,
it does not occur in higher-dimensional systems. This is basically related to the fact that the
domain walls of strictly 1d chains are independent of the domain length, while in higher di-
mensions the domain-wall size, and thus the number of broken bonds, increases with increasing
domain volume. Therefore, the dipolar spin-ice materials represent the very exceptional case
where fractional excitations can be realized in a 3-dimensional system.
Another important aspect is the analogy of these fractional excitations to magnetic monopoles.
This can be best visualized within the so-called dumbbell model [11]. For its construction,
the dipole vectors (black arrows in Fig. 7) are replaced by dumbbells of opposite magnetic
monopole charges ±qm at the centers of the 2 neighboring tetrahedra. In order to reproduce
the original dipole moment µ � 10µB, on has to set qm � 10µB/rt � 2.3µB/Å, where
rt =

√
3/2 rnn is the distance between the centers of neighboring tetrahedra and rnn � 3.54 Å

denotes the nearest neighbor distance of the magnetic Dy or Ho ions. Each tetrahedron is oc-
cupied by 4 magnetic monopole charges, which just cancel to zero for the six 2in-2out config-
urations, the 3in-1out and 1in-3out states carry +2qm and −2qm, respectively, while 4in (4out)
has a total charge of +4qm (−4qm). By introducing the net magnetic charge Q = 2qm, one can
formulate a magnetic Coulomb law:

V (rαβ) =

{
µ0

4π

QαQβ

rαβ
α �= β

1
2
ν0Q

2
α α = β

(4)

As is shown in [11], Eq. (4) yields a very good approximation of the original dipolar spin-ice
model based on Eq. (1). The tetrahedra are labeled by α, β, the first line describes a (magnetic)
Coulomb interaction between charges on different sites and the second line is a self energy,
where the parameter ν0 is given by a lengthy combination of Jex, Dnn, and rnn; see [11]. Each
tetrahedral site may be occupied either with 0, 1, or 2 charges of ±Q, but there are as many
positive as negative charges, because they can only be created pairwise by rotating a dumbbell.
With the above constraints (and a large-enough value of ν0), the groundstate of Eq. (4) at zero
energy is given by Qα = 0 for all sites, which obviously corresponds to the 2in-2out states
given by the ice rule including their sixfold degeneracy. A minimum excitation requires twice
the self energy minus the nearest-neighbor attraction. This corresponds to Fig. 7(b), where
the red and blue circles correspond to +Q and −Q, respectively, and in (c) the distance rαβ
between the monopole charges has increased. Due to the 1/rαβ potential, it is also clear now
that the total energy increases with increasing distance, but nevertheless the ±Q excitations
behave as individual magnetic (anti-)monopoles, because they are asymptotically free in the
limit of infinite rαβ . In this sense, the situation is equivalent to electric charges ±Qe with
the electrostatic 1/r Coulomb potential. Of course, there are also clear differences and the
model (4) has limitations. A rather detailed discussion of these aspects in comparison to other
models, numerical simulations via Monte Carlo simulations and their applicability to reproduce
the experimental data of Dy2Ti2O7 can be found, e.g., in [29].
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Another obvious question is, how the above-described magnetic monopole excitations are re-
lated to so-called Dirac monopoles [30], whose existence would explain the quantization of the
electric charge e and would also remove the asymmetry of Maxwell’s equations with respect
to electric and magnetic charges. Despite intense search, no such magnetic monopoles could
be observed to date [31] and this statement is independent from the existence or absence of
monopole excitations in spin ice. The monopoles in spin-ice are no real particles, but emergent
quasi-particles that result from excitations of a strongly interacting many-body system. As such,
these monopoles only exist inside the magnetic material and correspond to sources and sinks of
the magnetic field �H , whereas the searched Dirac monopoles would correspond to sources or
sinks of the magnetic induction �B. Further differences concern the so-called Dirac strings that
are attached to the magnetic monopoles as is discussed in more detail in [9, 11]. Nevertheless,
the behavior of magnetic monopoles in spin ice should resemble that of real electric charges
and thus one may search for signatures of a so-called magnetricity, in analogy to electricity.
The perhaps most direct evidence for such an analogy would be to observe a magnetic current
as a function of an applied field �B. However, it is of course not possible to attach some kind of
’magnetic cables’ to the sample, simply because the existence of such a cable would require the
existence of magnetic charges.
Bramwell et al. [32] suggested to use the analogy between charges in electrolytes and spin-ice
monopoles to study magnetricity. This analogy results from the fact that the (anti-)monopole
excitations in spin ice always appear in pairs and interact via the 1/rαβ potential, which is sim-
ilar to the partial dissociation in electrolytes, e.g. 2H2O ↔ H3O

+ + OH− of water. Applying
an electric field favors the separation of the oppositely charged ions and, as a consequence, the
dissociation constant increases. This effect is called the second Wien effect, which for weak
electrolytes causes characteristic deviations from Ohm’s law due to the electric-field dependent
charge-carrier density [33]. Transferring this to magnetricity, one would expect an enhanced
density of magnetic (anti-)monopoles in finite external fields. However, for spin ice this anal-
ogy does not hold completely, because finite magnetic fields lift the groundstate degeneracy and,
as is sketched in Fig. 7(d-f), this suppresses the mobility of the individual (anti-)monopoles. To
be more specific, with increasing number of separation steps between the monopole and an-
timonopole the number of Zeeman-excited 2in-2out states increases and introduces a continu-
ously increasing binding potential. In contrast to the 1/rαβ potential, this additional binding po-
tential will prevent a fractionalization of the dipole excitations into individual (anti-)monopoles.
Because the Zeeman energy linearly scales with the magnetic field, this problem can be partially
circumvented by using very small external fields. Thus, for Dy2Ti2O7 the magnetic-field depen-
dence of µSR data was studied for very small transverse fields B ≤ 3 mT and from this analysis
a magnetic monopole charge Q � 5µB/Å was reported in [32], which agrees very well with
the value 2qm � 4.6µB/Å used in Eq. (4). However, severe doubts about this interpretation
have been published by 2 other groups [34, 35], which both studied µSR of Dy2Ti2O7 and ob-
tained data that differ from those of [32]. Thus, the experimental determination of the magnetic
monopole charge in spin ice remains an open issue.

6 Heat transport in spin ice

In this section, the influence of the spin-ice excitations on the heat transport will be discussed.
As the spin-ice materials are good insulators, the heat transport is dominated by phonons and
the magnetic excitations may influence the total heat transport in two ways. The magnetic ex-
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Fig. 8: (a) Thermal conductivity as a function of temperature for Y2Ti2O7 and DyYTi2O7 in zero
field compared to that of Dy2Ti2O7 in zero field and B = 0.5 T applied along [100]. (b) Com-
parison of the field-dependent thermal conductivities of DyYTi2O7 and Dy2Ti2O7 for different
temperatures. The field scales are corrected with respect to the demagnetization fields DM .
The inset is an enlarged view of the region where the Dy2Ti2O7 data obtained with increasing
(•) and decreasing (◦) field are hysteretic. (data from [25, 36]).

citations may add an additional contribution to the heat transport or they scatter with phonons
and therefore suppress the phonon heat transport. In general, both effects are present and as an
approximate Ansatz the superposition κ � κph + κmag can be used, where both individual con-
tributions κph and κmag are reduced from to their hypothetical bare values by phonon-magnon
scattering.
From the experimental point of view, the main task is to judge whether there is a sizable mag-
netic contribution to the overall heat transport. For this, one can compare the temperature
and magnetic-field dependences of κ for spin-ice materials with κ(T,H) of suitable reference
materials, as it is shown in Fig. 8. An ideal non-magnetic reference is Y2Ti2O7, which also crys-
tallizes in the pyrochlore structure and the ionic radius of Y3+ is located between those of Dy3+

and Ho3+. Therefore, it is also possible to study the corresponding dilution series, where Dy3+

or Ho3+ are partially substituted by Y3+ [23, 37]. For larger amounts of non-magnetic Y3+ ions,
the spin-ice behavior is successively suppressed, because the system changes from being highly
frustrated towards highly dilute. This crossover causes a rapid decrease in the low-temperature
entropy, which is observed experimentally in (Dy1-xYx)2Ti2O7 and also in Monte Carlo simu-
lations [23, 38]. Thus, the 50%-diluted material DyYTi2O7 can serve as a magnetic reference
material without spin-ice behavior. Figure 8(a) compares the temperature dependences of κ(T )
for different materials. In this double-logarithmic representation, the low-temperature data for
Y2Ti2O7 approach a straight line, that is κ(T ) ∝ T 2.4, which is close to a T 3 dependence ex-
pected for the heat transport of acoustic phonons, and a very similar behavior is found for κ(T )
of DyYTi2O7. For Dy2Ti2O7, however, the zero-field data show a pronounced shoulder around
T � 1 K, which is suppressed to a more standard power-law dependence when a small magnetic
field of 0.5 T is applied along [100]. This already indicates an anomalous κ(T,H) of Dy2Ti2O7

in the field and temperature range, where the spin-ice physics is dominant, see Fig. 4. A di-
rect comparison of the field dependences κ(H) is shown in Fig. 8(b). For Y2Ti2O7, κ does not
change as a function of field [36], as expected for a non-magnetic insulator. In contrast, κ(H)
considerably decreases with increasing field for both Dy-based materials and above about 1 T
the shape of the κ(H) curves is very similar. In contrast, at T ≤ 2 K and fields below 0.5 T,
there is an additional step-like decrease of κ of Dy2Ti2O7, which is almost completely absent in
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Another obvious question is, how the above-described magnetic monopole excitations are re-
lated to so-called Dirac monopoles [30], whose existence would explain the quantization of the
electric charge e and would also remove the asymmetry of Maxwell’s equations with respect
to electric and magnetic charges. Despite intense search, no such magnetic monopoles could
be observed to date [31] and this statement is independent from the existence or absence of
monopole excitations in spin ice. The monopoles in spin-ice are no real particles, but emergent
quasi-particles that result from excitations of a strongly interacting many-body system. As such,
these monopoles only exist inside the magnetic material and correspond to sources and sinks of
the magnetic field �H , whereas the searched Dirac monopoles would correspond to sources or
sinks of the magnetic induction �B. Further differences concern the so-called Dirac strings that
are attached to the magnetic monopoles as is discussed in more detail in [9, 11]. Nevertheless,
the behavior of magnetic monopoles in spin ice should resemble that of real electric charges
and thus one may search for signatures of a so-called magnetricity, in analogy to electricity.
The perhaps most direct evidence for such an analogy would be to observe a magnetic current
as a function of an applied field �B. However, it is of course not possible to attach some kind of
’magnetic cables’ to the sample, simply because the existence of such a cable would require the
existence of magnetic charges.
Bramwell et al. [32] suggested to use the analogy between charges in electrolytes and spin-ice
monopoles to study magnetricity. This analogy results from the fact that the (anti-)monopole
excitations in spin ice always appear in pairs and interact via the 1/rαβ potential, which is sim-
ilar to the partial dissociation in electrolytes, e.g. 2H2O ↔ H3O

+ + OH− of water. Applying
an electric field favors the separation of the oppositely charged ions and, as a consequence, the
dissociation constant increases. This effect is called the second Wien effect, which for weak
electrolytes causes characteristic deviations from Ohm’s law due to the electric-field dependent
charge-carrier density [33]. Transferring this to magnetricity, one would expect an enhanced
density of magnetic (anti-)monopoles in finite external fields. However, for spin ice this anal-
ogy does not hold completely, because finite magnetic fields lift the groundstate degeneracy and,
as is sketched in Fig. 7(d-f), this suppresses the mobility of the individual (anti-)monopoles. To
be more specific, with increasing number of separation steps between the monopole and an-
timonopole the number of Zeeman-excited 2in-2out states increases and introduces a continu-
ously increasing binding potential. In contrast to the 1/rαβ potential, this additional binding po-
tential will prevent a fractionalization of the dipole excitations into individual (anti-)monopoles.
Because the Zeeman energy linearly scales with the magnetic field, this problem can be partially
circumvented by using very small external fields. Thus, for Dy2Ti2O7 the magnetic-field depen-
dence of µSR data was studied for very small transverse fields B ≤ 3 mT and from this analysis
a magnetic monopole charge Q � 5µB/Å was reported in [32], which agrees very well with
the value 2qm � 4.6µB/Å used in Eq. (4). However, severe doubts about this interpretation
have been published by 2 other groups [34, 35], which both studied µSR of Dy2Ti2O7 and ob-
tained data that differ from those of [32]. Thus, the experimental determination of the magnetic
monopole charge in spin ice remains an open issue.

6 Heat transport in spin ice

In this section, the influence of the spin-ice excitations on the heat transport will be discussed.
As the spin-ice materials are good insulators, the heat transport is dominated by phonons and
the magnetic excitations may influence the total heat transport in two ways. The magnetic ex-
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Fig. 8: (a) Thermal conductivity as a function of temperature for Y2Ti2O7 and DyYTi2O7 in zero
field compared to that of Dy2Ti2O7 in zero field and B = 0.5 T applied along [100]. (b) Com-
parison of the field-dependent thermal conductivities of DyYTi2O7 and Dy2Ti2O7 for different
temperatures. The field scales are corrected with respect to the demagnetization fields DM .
The inset is an enlarged view of the region where the Dy2Ti2O7 data obtained with increasing
(•) and decreasing (◦) field are hysteretic. (data from [25, 36]).

citations may add an additional contribution to the heat transport or they scatter with phonons
and therefore suppress the phonon heat transport. In general, both effects are present and as an
approximate Ansatz the superposition κ � κph + κmag can be used, where both individual con-
tributions κph and κmag are reduced from to their hypothetical bare values by phonon-magnon
scattering.
From the experimental point of view, the main task is to judge whether there is a sizable mag-
netic contribution to the overall heat transport. For this, one can compare the temperature
and magnetic-field dependences of κ for spin-ice materials with κ(T,H) of suitable reference
materials, as it is shown in Fig. 8. An ideal non-magnetic reference is Y2Ti2O7, which also crys-
tallizes in the pyrochlore structure and the ionic radius of Y3+ is located between those of Dy3+

and Ho3+. Therefore, it is also possible to study the corresponding dilution series, where Dy3+

or Ho3+ are partially substituted by Y3+ [23, 37]. For larger amounts of non-magnetic Y3+ ions,
the spin-ice behavior is successively suppressed, because the system changes from being highly
frustrated towards highly dilute. This crossover causes a rapid decrease in the low-temperature
entropy, which is observed experimentally in (Dy1-xYx)2Ti2O7 and also in Monte Carlo simu-
lations [23, 38]. Thus, the 50%-diluted material DyYTi2O7 can serve as a magnetic reference
material without spin-ice behavior. Figure 8(a) compares the temperature dependences of κ(T )
for different materials. In this double-logarithmic representation, the low-temperature data for
Y2Ti2O7 approach a straight line, that is κ(T ) ∝ T 2.4, which is close to a T 3 dependence ex-
pected for the heat transport of acoustic phonons, and a very similar behavior is found for κ(T )
of DyYTi2O7. For Dy2Ti2O7, however, the zero-field data show a pronounced shoulder around
T � 1 K, which is suppressed to a more standard power-law dependence when a small magnetic
field of 0.5 T is applied along [100]. This already indicates an anomalous κ(T,H) of Dy2Ti2O7

in the field and temperature range, where the spin-ice physics is dominant, see Fig. 4. A di-
rect comparison of the field dependences κ(H) is shown in Fig. 8(b). For Y2Ti2O7, κ does not
change as a function of field [36], as expected for a non-magnetic insulator. In contrast, κ(H)
considerably decreases with increasing field for both Dy-based materials and above about 1 T
the shape of the κ(H) curves is very similar. In contrast, at T ≤ 2 K and fields below 0.5 T,
there is an additional step-like decrease of κ of Dy2Ti2O7, which is almost completely absent in
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Fig. 9: (a) Magnetic-field dependent thermal conductivities of HoYTi2O7 and Ho2Ti2O7 for
H‖[110]. The inset enlarges the low-field range. (b) Zero-field magnetic contribution κmag of
the heat transport as a function of temperature for Dy2Ti2O7 and Ho2Ti2O7. (c) Anisotropy
of κmag of Dy2Ti2O7 with respect to different magnetic-field directions. For H‖[110], the heat
current j is directed either along the α (j‖H, •) or the β chains (j ⊥ H, ◦). Field scales in (a)
and (c) are corrected with respect to the demagnetization fields DM . (data from [36, 37]).

κ of DyYTi2O7. This yields clear evidence that the low-field drop of κ is characteristic for the
spin-ice phase. This conclusion is further confirmed by the very similar hysteresis behavior of
κ(H) and M(H) observed below about 0.5 K. In contrast, the continuous decrease of κ(H) at
higher fields is not related to the spin-ice phase, it is also present in the highly dilute DyYTi2O7

and, moreover, it extends to a field range where the magnetization is essentially saturated.
Surprisingly, κ(H) of the Ho-based pyrochlore materials has a very different high-field depen-
dence. As is shown in Fig.9(a), κ strongly increases above about 1.5 T and essentially saturates
above 3 T. Such a behavior usually indicates that the phononic heat transport at low fields is re-
duced due to scattering between phonons and magnetic excitations, and this scattering channel
is suppressed when the magnetic moments become fully polarized in high fields. However, such
a field-dependent scattering of phonons cannot explain, why the heat transport in the Dy-based
materials actually decreases at high fields, and it was speculated that this difference is related
to magnetostriction effects [37]. With respect to the spin-ice phase, a detailed understanding of
the high-field behavior is not absolutely necessary. It is sufficient to realize that for both, the
Ho-based and the Dy-based systems, the high-field dependence remains essentially unchanged
when the pure spin-ice compounds are dilute with 50 % of non-magnetic Y, whereas the step-
like decrease of κ(H) at very low field is only present in the respective spin-ice materials.
Because for H‖[100] the step in κ (anti-)correlates with the step-like increase of the magneti-
zation to saturation [25], the step height of κ can be used as a measure of the magnetic contri-
bution κmag of the heat transport in zero field. This has been evaluated at different temperatures
and, as shown in Fig. 9(b), the corresponding κmag(T ) for Dy2Ti2O7 has a broad maximum
around 1.5 K, which strongly resembles the temperature dependence of the magnetic specific
heat cmag(T ), see Fig. 6. For Ho2Ti2O7, κmag(T ) is of similar shape, but it is reduced in size
and its maximum is located around 0.6 K. Finally, Fig. 9(c) compares the anisotropic magnetic-
field dependences of κmag(T = 0.4K) for Dy2Ti2O7 and reveals an interesting correlation:
the maximum κmag is obtained for the sixfold degenerate zero-field groundstate, this is fol-
lowed by a rather large plateau value of κmag in the threefold degenerate kagome-ice phase
for µ0H ≤ 1 T ‖[111], whereas κmag vanishes in the fully magnetized states for H‖[100] and
H‖[111], which are non-degenerate. For H‖[110], there is also an initial drop of κmag, but only
to a finite value, which slowly decreases with further increasing field. Probably, this finite κmag
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stems from the β chains whose moments are not fixed by the perpendicular magnetic field. This
would explain why this finite κmag is larger for a heat current j along the β chains than for j
along the α chains. Thus, the anisotropy of κmag essentially reflects the different degeneracies
of the field-induced spin-ice groundstates and suggests that κmag is determined by the mobility
of the (anti-)monopole excitations.
Unfortunately, theoretical predictions about the expected magnitude of κmag due to monopole
excitations in spin ice are difficult. On the one hand, their energy scale is low, while, on the
other hand, their mobility due to the fractionalization could be rather high. The fractionalization
together with the strong Ising character of the magnetic moments are problematic, because
standard descriptions based on wave-like quasiparticle excitations cannot be applied here. This
makes reliable estimates of a monopole mean-free path very difficult [25, 39] and it remains an
open issue whether the anomalous κmag of Dy2Ti2O7 can also quantitatively be explained by
(anti-)monopole excitations.

7 Concluding remarks
Intense research over the last 2 decades has led to a very deep understanding of many aspects of
the dipolar spin-ice materials Ho2Ti2O7 and Dy2Ti2O7 and it is generally accepted that they rep-
resent the magnetic analogue of ordinary water ice. Nevertheless, the ultimate low-temperature
behavior of these spin-ice materials remains an open issue. Concerning the excitations, there is
lots of more or less indirect evidence that a description based on essentially unbound magnetic
monopole/antimonopole pairs is most appropriate, but again, a direct proof of, e.g., a monopole
charge is still a matter of debate. In addition, there are many other open questions. One ex-
ample, concerning the magnetic heat transport has been described in some detail, but there are
many more open issues concerning the dynamics of the magnetic excitations of spin ice, which
are not yet understood.
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Fig. 9: (a) Magnetic-field dependent thermal conductivities of HoYTi2O7 and Ho2Ti2O7 for
H‖[110]. The inset enlarges the low-field range. (b) Zero-field magnetic contribution κmag of
the heat transport as a function of temperature for Dy2Ti2O7 and Ho2Ti2O7. (c) Anisotropy
of κmag of Dy2Ti2O7 with respect to different magnetic-field directions. For H‖[110], the heat
current j is directed either along the α (j‖H, •) or the β chains (j ⊥ H, ◦). Field scales in (a)
and (c) are corrected with respect to the demagnetization fields DM . (data from [36, 37]).

κ of DyYTi2O7. This yields clear evidence that the low-field drop of κ is characteristic for the
spin-ice phase. This conclusion is further confirmed by the very similar hysteresis behavior of
κ(H) and M(H) observed below about 0.5 K. In contrast, the continuous decrease of κ(H) at
higher fields is not related to the spin-ice phase, it is also present in the highly dilute DyYTi2O7

and, moreover, it extends to a field range where the magnetization is essentially saturated.
Surprisingly, κ(H) of the Ho-based pyrochlore materials has a very different high-field depen-
dence. As is shown in Fig.9(a), κ strongly increases above about 1.5 T and essentially saturates
above 3 T. Such a behavior usually indicates that the phononic heat transport at low fields is re-
duced due to scattering between phonons and magnetic excitations, and this scattering channel
is suppressed when the magnetic moments become fully polarized in high fields. However, such
a field-dependent scattering of phonons cannot explain, why the heat transport in the Dy-based
materials actually decreases at high fields, and it was speculated that this difference is related
to magnetostriction effects [37]. With respect to the spin-ice phase, a detailed understanding of
the high-field behavior is not absolutely necessary. It is sufficient to realize that for both, the
Ho-based and the Dy-based systems, the high-field dependence remains essentially unchanged
when the pure spin-ice compounds are dilute with 50 % of non-magnetic Y, whereas the step-
like decrease of κ(H) at very low field is only present in the respective spin-ice materials.
Because for H‖[100] the step in κ (anti-)correlates with the step-like increase of the magneti-
zation to saturation [25], the step height of κ can be used as a measure of the magnetic contri-
bution κmag of the heat transport in zero field. This has been evaluated at different temperatures
and, as shown in Fig. 9(b), the corresponding κmag(T ) for Dy2Ti2O7 has a broad maximum
around 1.5 K, which strongly resembles the temperature dependence of the magnetic specific
heat cmag(T ), see Fig. 6. For Ho2Ti2O7, κmag(T ) is of similar shape, but it is reduced in size
and its maximum is located around 0.6 K. Finally, Fig. 9(c) compares the anisotropic magnetic-
field dependences of κmag(T = 0.4K) for Dy2Ti2O7 and reveals an interesting correlation:
the maximum κmag is obtained for the sixfold degenerate zero-field groundstate, this is fol-
lowed by a rather large plateau value of κmag in the threefold degenerate kagome-ice phase
for µ0H ≤ 1 T ‖[111], whereas κmag vanishes in the fully magnetized states for H‖[100] and
H‖[111], which are non-degenerate. For H‖[110], there is also an initial drop of κmag, but only
to a finite value, which slowly decreases with further increasing field. Probably, this finite κmag
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stems from the β chains whose moments are not fixed by the perpendicular magnetic field. This
would explain why this finite κmag is larger for a heat current j along the β chains than for j
along the α chains. Thus, the anisotropy of κmag essentially reflects the different degeneracies
of the field-induced spin-ice groundstates and suggests that κmag is determined by the mobility
of the (anti-)monopole excitations.
Unfortunately, theoretical predictions about the expected magnitude of κmag due to monopole
excitations in spin ice are difficult. On the one hand, their energy scale is low, while, on the
other hand, their mobility due to the fractionalization could be rather high. The fractionalization
together with the strong Ising character of the magnetic moments are problematic, because
standard descriptions based on wave-like quasiparticle excitations cannot be applied here. This
makes reliable estimates of a monopole mean-free path very difficult [25, 39] and it remains an
open issue whether the anomalous κmag of Dy2Ti2O7 can also quantitatively be explained by
(anti-)monopole excitations.

7 Concluding remarks
Intense research over the last 2 decades has led to a very deep understanding of many aspects of
the dipolar spin-ice materials Ho2Ti2O7 and Dy2Ti2O7 and it is generally accepted that they rep-
resent the magnetic analogue of ordinary water ice. Nevertheless, the ultimate low-temperature
behavior of these spin-ice materials remains an open issue. Concerning the excitations, there is
lots of more or less indirect evidence that a description based on essentially unbound magnetic
monopole/antimonopole pairs is most appropriate, but again, a direct proof of, e.g., a monopole
charge is still a matter of debate. In addition, there are many other open questions. One ex-
ample, concerning the magnetic heat transport has been described in some detail, but there are
many more open issues concerning the dynamics of the magnetic excitations of spin ice, which
are not yet understood.
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